Тригонометрия — микрораздел математики, в котором изучаются зависимости между величинами углов и длинами сторон треугольников, а также алгебраические тождества тригонометрических функций.
Существует множество областей, в которых применяются тригонометрия и тригонометрические функции. Тригонометрия или тригонометрические функции используются в астрономии, в морской и воздушной навигации, в акустике, в оптике, в электронике, в архитектуре и в других областях.
История создания тригонометрии
История тригонометрии, как науки о соотношениях между углами и сторонами треугольника и других геометрических фигур, охватывает более двух тысячелетий. Большинство таких соотношений нельзя выразить с помощью обычных алгебраических операций, и поэтому понадобилось ввести особые тригонометрические функции, первоначально оформлявшиеся в виде числовых таблиц.
Историки полагают, что тригонометрию создали древние астрономы, немного позднее её стали использовать в архитектуре. Со временем область применения тригонометрии постоянно расширялась, в наши дни она включает практически все естественные науки, технику и ряд других областей деятельности. Здесь кстати можно посмотреть формулы по тригонометрии и их решение.
Ранние века
От вавилонской математики ведёт начало привычное нам измерение углов градусами, минутами и секундами (введение этих единиц в древнегреческую математику обычно приписывают Гипсиклу, II век до н. э.).
Главным достижением этого периода стало соотношение катетов и гипотенузы в прямоугольном треугольнике, позже получившее имя теоремы Пифагора.
Древняя Греция
Общее и логически связное изложение тригонометрических соотношений появилось в древнегреческой геометрии. Греческие математики ещё не выделяли тригонометрию как отдельную науку, для них она была частью астрономии.
Основным достижением античной тригонометрической теории стало решение в общем виде задачи «решения треугольников», то есть нахождения неизвестных элементов треугольника, исходя из трёх заданных его элементов (из которых хотя бы один является стороной).
Прикладные тригонометрические задачи отличаются большим разнообразием — например, могут быть заданы измеримые на практике результаты действий над перечисленными величинами (к примеру, сумма углов или отношение длин сторон).
Параллельно с развитием тригонометрии плоскости греки, под влиянием астрономии, далеко продвинули сферическую тригонометрию. В «Началах» Евклида на эту тему имеется только теорема об отношении объёмов шаров разного диаметра, но потребности астрономии и картографии вызвали быстрое развитие сферической тригонометрии и смежных с ней областей — системы небесных координат, теории картографических проекций, технологии астрономических приборов.
Средневековье
В IV веке, после гибели античной науки, центр развития математики переместился в Индию. Они изменили некоторые концепции тригонометрии, приблизив их к современным: к примеру, они первыми ввели в использование косинус.
Первым специализированным трактатом по тригонометрии было сочинение среднеазиатского учёного Аль-Бируни (X—XI век) «Книга ключей науки астрономии» (995—996 годы). Целый курс тригонометрии содержал главный труд Аль-Бируни — «Канон Мас‘уда» (книга III). В дополнение к таблицам синусов (с шагом 15') Аль-Бируни дал таблицы тангенсов (с шагом 1°).
После того как арабские трактаты были в XII-XIII веках переведены на латынь, многие идеи индийских и персидских математиков стали достоянием европейской науки. По всей видимости, первое знакомство европейцев с тригонометрией состоялось благодаря зиджу Аль-Хорезми, два перевода которого были выполнены в XII веке.
Первым европейским сочинением, целиком посвященным тригонометрии, часто называют «Четыре трактата о прямых и обращенных хордах» английского астронома Ричарда Уоллингфордского (около 1320 г.). Тригонометрические таблицы, чаще переводные с арабского, но иногда и оригинальные, содержатся в сочинениях ряда других авторов XIV—XV веков. Тогда же тригонометрия заняла место среди университетских курсов.
Новое время
Развитие тригонометрии в Новое время стало чрезвычайно важным не только для астрономии и астрологии, но и для других приложений, в первую очередь артиллерии, оптики и навигации при дальних морских путешествиях. Поэтому после XVI века этой темой занимались многие выдающиеся учёные, в том числе Николай Коперник, Иоганн Кеплер, Франсуа Виет. Коперник посвятил тригонометрии две главы в своём трактате «О вращении небесных сфер» (1543). Вскоре (1551) появились 15-значные тригонометрические таблицы Ретика, ученика Коперника. Кеплер опубликовал труд «Оптическая часть астрономии» (1604).
Виет в первой части своего «Математического канона» (1579) поместил разнообразные таблицы, в том числе тригонометрические, а во второй части дал обстоятельное и систематическое, хотя и без доказательств, изложение плоской и сферической тригонометрии. В 1593 году Виет подготовил расширенное издание этого капитального труда. Благодаря трудам Альбрехта Дюрера, на свет появилась синусоида.
XVIII век
Современный вид тригонометрии придал Леонард Эйлер. В трактате «Введение в анализ бесконечных» (1748) Эйлер дал определение тригонометрических функций, эквивалентное современному, и соответственно определил обратные функции.
Эйлер рассматривал как допустимые отрицательные углы и углы, большие 360°, что позволило определить тригонометрические функции на всей вещественной числовой прямой, а затем продолжить их на комплексную плоскость. Когда встал вопрос о распространении тригонометрических функций на тупые углы, знаки этих функций до Эйлера нередко выбирались ошибочно; многие математики считали, например, косинус и тангенс тупого угла положительными. Эйлер определил эти знаки для углов в разных координатных квадрантах, исходя из формул приведения.
Общей теорией тригонометрических рядов Эйлер не занимался и сходимость полученных рядов не исследовал, но получил несколько важных результатов. В частности, он вывел разложения целых степеней синуса и косинуса.
Применение тригонометрии
По своему правы те, кто говорит, что тригонометрия в реальной жизни не нужна. Ну, каковы ее обычные прикладные задачи? Измерять расстояние между недоступными объектами.
Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Также следует отметить применение тригонометрии в таких областях, как техника навигации, теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел (и, как следствие, криптография), сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография и т.д.
Вывод: тригонометрия - огромная помощница в нашей повседневной жизни.